
Add: HeBei ShengShi HongBang Cellulose Technology CO.,LTD.


CONTACT US
+86 13180486930
What I’m Seeing in Hydroxypropyl Methyl Cellulose Right Now If you work in dry-mix mortars, pharma tablets, or even detergent pods, you’ve probably bumped into Hydroxypropyl Methyl Cellulose HPMC more than once. It’s a non-ionic cellulose ether—yes, derived from natural cellulose—and it keeps getting more attention as the “quiet” performance enhancer in countless formulations. Honestly, adoption is accelerating across construction chemicals and high-viscosity personal care because of supply stability and cost-to-value. Many customers say the workability gains are immediate; I tend to agree. Origin and who’s behind it From HeBei ShengShi HongBang Cellulose Technology CO., LTD (Room 1904, Building B, Wanda Office Building, JiaoYu Road, Xinji City, Hebei Province). I’ve toured similar facilities; the process is rigorous and surprisingly clean. Their pitch is consistent rheology, tight particle size control, and fast redispersion in cement-alkali environments. How it’s made (short version, no fluff) Materials: refined cotton, NaOH (alkalization), methyl chloride (MC), propylene oxide (PO), purified water. Method flow: alkalization → etherification (MC+PO) → neutralization → washing to remove salts → drying → milling → sieving → packaging. QA/testing: viscosity (Brookfield, 2% w/w, 20°C), methoxyl/hydroxypropyl content, moisture, pH, ash, sieve residue, gel temperature. Service life: ≈24 months in dry, sealed bags; avoid >30°C and humidity. Real-world use may vary. Industries: tile adhesive, EIFS/ETICS, gypsum putty, self-leveling; tablets (binder), ophthalmics, toothpaste; shampoos, detergents, coatings. Product specifications (typical) Parameter Spec (≈) Viscosity (2% w/w, 20°C) 400–200,000 mPa·s (multiple grades) Methoxyl (DS) 19–24% Hydroxypropyl (MS) 4–12% Moisture ≤5% pH (1% sol.) 6.0–8.5 Gel temperature 60–75°C Sieve residue (100 mesh) ≤1% Bulk density 0.30–0.50 g/cm³ Note: measured by Brookfield LV, spindle/time per internal SOP; actual plant results vary with salts and mixing energy. Why formulators pick it Water retention and open time in cement systems (EN 12004 tile standards). Anti-sag, better trowelability; smoother edges on putties. Tablet binding/film formation meeting USP/Ph. Eur. monographs. Electrolyte tolerance; stable viscosity in laundry detergents—surprisingly robust. Vendor snapshot (what buyers compare) Vendor Certs Strength Viscosity Range MOQ HeBei ShengShi HongBang ISO 9001; REACH prereg. Construction focus; cost-value 400–200,000 ≈1 MT Dow (METHOCEL) ISO, GMP sites Global supply, pharma grades Low to ultra-high Varies Ashland (Benecel) ISO, EXCiPACT Tablets, coatings uniformity Wide Varies Applications and quick data Tile adhesive: +0.2–0.35% Hydroxypropyl Methyl Cellulose HPMC → open time +10–15 min; slip ≤0.5 mm (EN 12004). Self-leveling: 0.05–0.1% improves edge cohesion; flow per ASTM C1437: 115–130% with stable ring. Gypsum putty: 0.2–0.3% → sag drop by ≈30%, smoother knife feel (shop-floor feedback). Tablets: 2–5% binder; disintegration tuned via viscosity grade (USP-NF compliant grades available). Customization and QC For Hydroxypropyl Methyl Cellulose HPMC , you can specify viscosity windows, substitution ratios, surface treatment for fast wetting, and targeted gel temp. Batch COAs usually list Brookfield data, moisture, mesh residue, and heavy metals when applicable. Incoming QC on your side? I’d validate viscosity at your ionic strength, not just DI water. Mini case studies Eastern EU tile factory: switched to 60,000 mPa·s grade; open time +12 min; consumer complaints on “grab” fell 40% in 2 months. Generic IR tablet line: replaced PVP with Hydroxypropyl Methyl Cellulose HPMC binder at 3%; friability down from 0.9% to 0.3% while keeping disintegration at 9–12 min. Standards and compliance Typical references: EN 12004 (tile adhesives), ASTM C1437 (flow), ISO 9001 for QMS, USP/Ph. Eur. Hypromellose monographs, plus REACH where required. To be honest, don’t skip pilot mixes; salts and fillers can nudge viscosity more than you expect. Citations ASTM C1437 – Standard Test Method for Flow of Hydraulic Cement Mortar. EN 12004 – Adhesives for tiles: Requirements, evaluation of conformity. USP–NF Monograph: Hypromellose (Hydroxypropyl Methylcellulose). ISO 9001:2015 – Quality Management Systems Requirements.

Production

Experience

Acreage
Hydroxypropyl methylcellulose 2208 , a highly versatile compound, stands at the forefront of numerous industrial applications due to its exceptional properties and efficacy. Widely recognized in the fields of pharmaceuticals, food manufacturing, and construction, this compound is celebrated for its ability to encapsulate, bind, and thicken with remarkable efficiency. In the pharmaceutical sector, hydroxypropyl methylcellulose 2208 serves as an essential ingredient in the production of controlled-release formulations. Its unique viscosity and gel-forming capabilities ensure the consistent release of active ingredients, thereby enhancing the therapeutic efficacy of medications. Experienced pharmacists often laud this compound for its stability under various pH conditions, which guarantees maximum absorption in the digestive tract. Clinical trials consistently demonstrate its safety and non-toxicity, reinforcing the trust medical professionals place in its use. In the realm of food technology, hydroxypropyl methylcellulose 2208 is acknowledged as a food additive that optimizes texture and consistency. Its ability to act as an emulsifier and stabilizer is particularly valued in the production of low-fat dairy and bakery products. Culinary experts often highlight its role in improving mouthfeel and extending shelf life, providing a more satisfactory experience for consumers. Given its plant-derived origin, it meets the growing demand for vegetarian and vegan-friendly additives, thereby aligning with modern dietary preferences. hydroxypropyl methylcellulose 2208 The construction industry finds hydroxypropyl methylcellulose 2208 indispensable, especially in cement-based applications. As a highly effective water retention agent and workability enhancer, it improves the adhesion and durability of mortars and plasters. Professional builders and craftsmen appreciate its contribution to reducing shrinkage and cracking, ultimately leading to more robust and long-lasting structures. Technical data consistently supports its superior performance in high-stress environments, making it a go-to choice for industry leaders aiming to achieve excellence and innovation. From an environmental perspective, hydroxypropyl methylcellulose 2208 is a compound that shines. Being biodegradable and derived from natural sources, it meets the sustainability criteria that modern industries strive for. Environmental scientists and sustainability experts commend its role in reducing carbon footprints and promoting eco-friendly industrial practices. Its integration into sustainable product lines showcases how advances in material science can align with global efforts to protect the planet. Overall, hydroxypropyl methylcellulose 2208 is a testament to scientific advancement and industrial versatility. Through extensive research and real-world application, it commands respect and trust across various sectors. Its continuous evolution and adaptability resonate with industry experts who are committed to excellence in their fields. As global trends continue to push for innovation and sustainability, hydroxypropyl methylcellulose 2208 remains a key player, inspiring confidence with its authoritative presence and trusted solutions.
Starch derivatives are a vital component in a myriad of industries, offering versatility and functionality that goes beyond what native starches can provide. These modified starches are tailored to enhance the properties needed for specific applications, thus meeting the stringent requirements of modern production processes. In this exploration of starch derivatives, several notable examples are highlighted, showcasing their diverse applications and benefits. One exemplary starch derivative is ethylated starch , extensively utilized in the paper industry. This starch modification involves the introduction of ethyl groups into the starch molecule, resulting in improved water resistance and adhesive properties. Its significant utility lies in producing high-quality paper products with enhanced printability and durability. The ethylation process not only boosts the hydrophobic characteristics of starch but also provides a smooth paper surface, thus effectively enhancing the ink absorption and reducing feathering during the printing process. Another prominent example is oxidized starch, frequently employed in the textile industry. By subjecting native starch to controlled oxidation, the resulting derivative possesses a lower viscosity and improved film-forming properties. This transformation is particularly pivotal in textile warp sizing, where oxidized starch ensures smooth running of high-speed looms by reducing yarn breakage. Moreover, it lends a softer hand to fabrics, enhancing the overall texture and feel, and is easily washed out of fabrics, ensuring no residue remains after processing. In the realm of food production, maltodextrins serve as a prime example of starch derivatives that have found widespread acceptance. Produced by the partial hydrolysis of starch, maltodextrins are valued for their ability to improve the mouthfeel and solubility of various food products. They function as excellent fat replacers, bulking agents, and carriers for flavors, making them indispensable in the creation of low-calorie foods and beverages. Their easy digestibility and rapid energy supply are particularly beneficial in sports drinks and nutritional supplements, offering consumers the dual benefits of flavor enhancement and nutritional fortification. starch derivatives examples Further advancing into the pharmaceutical and cosmetic industries, hydroxypropyl starch represents a well-utilized derivative known for its film-forming capabilities and enhanced stability. This starch is produced by inserting hydroxypropyl groups into the starch chain, which improves its binding capacity and moisture retention. In pharmaceuticals, it acts as an effective excipient, aiding tablet binding and disintegration. Meanwhile, in cosmetics, hydroxypropyl starch is incorporated into formulations to create protective films on the skin, offering hydration and a silky, smooth feel without clogging pores. Finally, acetylated distarch adipate is spotlighted for its role in frozen foods. This starch derivative involves the introduction of both adipic acid and acetic anhydride, offering superior freeze-thaw stability and maintaining texture integrity upon thawing. It is particularly effective in frozen pie fillings, sauces, and gravies, where maintaining consistency and quality through temperature fluctuations is critical. Each of these starch derivatives exemplifies the intricate modifications that expand the functionality of starch beyond its conventional uses. By doing so, industries can address specific production challenges while delivering products that meet consumer expectations for quality and performance. The adaptability of starch derivatives ensures their continued relevance and importance in an ever-evolving marketplace, highlighting the necessity of ongoing innovation to meet the dynamic demands across various sectors. As research expands, it is expected that new derivatives will emerge, further augmenting the versatility of starch in industrial applications.
200000 Viscosities
Excellent product
We can produce pure products up to 200,000 viscosities
40000 tons
High yield
We don’t stop production all year round, and the annual output can reach 40,000 tons
24 hours
Quality service
We provide 24-hours online reception service, welcome to consult at any time
———— Inquiry Form
Schedule A services
Oct . 25, 2025
Oct . 25, 2025
Oct . 25, 2025